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The goal of structural synthesis is to automate the design

process by use of digital computers. In general_ the structural

synthesis problem is, given a set of load conditions and side

conditions for a structure, find by systematic means, a structure

which will support the loads, satisfy the side constraints_ and

maximize the merit by which the structure is to be evaluated.

The structure dealt with is an integrally stiffened waffle

l_e plate. Six design parameters are employed. These are

total depth, thickness of the sheet_ stiffener spacing in two

directions, and stiffener width in two directions.

Several attempted methods of synthesis are discussed. Data

is presented for five design problems.
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Chapter I

INTRODUCTION

The goal of structural synthesis is to automate the design

process by use of digital computers. In general the structural

synthesis problem is, given a set of load conditions and side

conditions for a structure, find by systematic means a structure

which will support the loads, satisfy the side conditions and

maximize the _erit by which the structure is to be evaluated. The

side conditions may or may not dictate the type of structure to be

used. At this stage in the development of synthesis techniques_ it

is assumed that the type of Structure is determined by the side

conditions or that several separate studies may be made on differ-

ent types of structures. In most cases some of the design pa-

rameters are also predetermined.

In the case presented here the type of structure which has

been selected is a waffle-like plate with integral orthogonal

stiffeners. The successful development of a synthesis capability

to minimize the weight of symmetric waffle plates has been reported

in Ref. l. This study included three independent design parameters_

stiffener spacing_ sheet thickness and stiffener thickness. The

work presented here extends this capability to a more general one

with more design parameters. This extension allows better designs

to be obtained and gives an indication of the problems involved in

developing synthesis techniques for problems of higher order in the

design parameters.
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The number of design parameters employed here is six. These

are stiffener spacing in two directions, width of both sets of

stiffeners, the total depth of the plate and sheet thickness.
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Chapter IK

THE WAFFLE SYNTHESIS PROBLEM

The structure dealt with is the waffle plate shown in Fig. l°

The design parameters as shown here are sheet thickness (ts) , total

depth (H), stiffener spacing in the x direction (bx), stiffener

spacing in the y direction (by), width of the x stiffener (tw ),
X

and width of the y stiffener (tw )o The over-all dimensions of
Y

the plate a and b are fixed and so is the material of the plate.

The plate is subjected to inplane loads onlyo The positive loads

are tension in the x direction (Nx) , tension in the y direction

(Ny), and shear on the positive x face in the positive y direction

(Nxy). These are shown in Fig. 2°

The structure may be required to carry several different

combinations of loads° That is, the plate may be subjected to

one set of loads Nx, Ny, and Nxy at one time and other sets of

loads Nx_ Ny, and Nxy at other times. An acceptably designed

plate must carry all of these. The computer programs written

_ill handle up to five load conditionso

The criterion of merit used for evaluation of the design

is the minimization of the total weight° The total weight is

given by
t t

t w

W = pat H 1 - (1 - _-) (1 _--) (i -
X

(2.1)
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The analysis used to predict the behavior of the structure is

given in Appendix I. In writing the computer programs this analysis

has been put in the form of behavior functions(seaPef, l_ By rearranging

the failure conditions for each mode of failure, behavior functions

are obtained in which the condition for satisfactory behavior is that

each behavior function must be less than or equal to one. In

addition to satisfying the behavior function conditions the designs

obtained must also satisfy the side conditions. These are also

given in Appendix I.

To solve the problem given above it is convenient to think of

it in terms of a design space. This design space is formed by using

each design parameter as a coordinate in the space. When the

problem is thought of in this form, the behavior functions and the

weight function, become hypersurfaces in the space. The side

constraints on the design parameters become hyperplanes. All of the

above are of dfmension n-1 where n is the number of design pa-

rameters (6). Since all of these are of dimension n-1 the term

hyper .will be dropped and the terms surface and plane will be

used here.

Pictured in this manner the design problem is a problem of

moving in a design space along a path which will converge to the

minimum weight design. In general, the procedure used in doing

this is to start with a design which lies in the acceptable region

of the space. This is a region where none of the constraints
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(behavior or side constraints) are violated by the design. Then

move in a series of steps toward the optimum. Design space nomen-

clature is presented in Fig. 3.

All the redesign processes presented here are in the same

form. These are methods of alternate step and steep descent. If

the present design point is a free point some form of steep descent

is used. This is a move which decreases the weight. A free point

is one which is not in violation and not within a certain given

tolerance of any of the constraints. The second type of move_ the

alternate step9 is made from a bound point.

design while maintaining a constant weight.

This move changes the

The object of this

where the

D q are present values of the design parameters_ the
P

direction cosines 9 and t is the distance of travel.

move is to obtain another free point. A bound point is one where

the design lies within a given tolerance of one or more constraints.

All the moves in both steep descent and alternate step are

made with the same means of modification. This is to add to each

of the present design parameters a change which is calculated by

multiplying the corresponding direction cosine by the distance of

travel. The equation for this is

P

D q+l are the new values of the design parameters_ the
P

@p are the
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Chapter III

STEEP DESCENT

Three different directions of steep descent are used in the

different programs. One is parallel to the t s axis and is made by

reducing the weight by an increment and solving for the correspond-

ing value of ts, holding the other design parameters constant. (See

section h.2) The second is along the negative to the gradient to

the weight surface. (See Fig. h) The components of the gradient

iare :

t t
w w

_t s by x

_W

_--_- = p ab

t t

-%-)(1- )
y x

_W _ - pab H

_b b
x x

t t
w t w

__I_ (I_ s xb -_) (I--_- )
x y

t t
t w

(1- _as)(l- b-_-z)b H
y x

(3.1)

BW _ pabH

_t b
_x Y

3W _ p abH

_t b
w X
Y

t
t w

X

t
t w

x(i- (i- -C-)
Y
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The third is to move from the present design point toward the point

in the space (satisfying side constraints only) where all design

parameters are such as to give a minimum weight. This is the point

of minimum sheet thickness, minimum total depth, minimum stiffener

widths, and maximum stiffener spacing. This method is used only as

a first steep descent direction in later programs, Alternate Base

Planes and Tangent Plane Methods. (See Fig. 5).

The procedure for moving along all of the above directions

is the same. First an arbitrary increment is picked (this is input

data). Then the new design is calculated and checked for design

parameter and behavior function violation. If no violation is

found the design is accepted as the new design point. The increment

is then doubled and the new trial design checked. If this is an

acceptable design, it becomes the new design point. This process

is continued until a violation is obtained. Here the distance of

travel is cut in half the new trial design being half way between

the present acceptable design and the last unacceptable design.

This is continued until an acceptable design is obtained. The

acceptable design becomes the new design point. Starting from

this point the distance is cut in half again and this trial checkedo

If the design is good it is accepted and a new trial proposed again

halfing the distance. If the design is not good a new trial is

proposed by taking half the last distance to the last acceptable

design. This, then_ continues until either a new design point is
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obtained which is within a certain prescribed tolerance of a con-

straint or the distance of travel becomes too small to be signifi-

cant. This last design is accepted as a bound point. (See Figs.

4 and 5)

It should be noted here that in using the last two methods

of steep descent, it is possible to move away from several of the

side constraints. For this reason when a design is bounded by any

of these side constraints, it is not regarded as bound. These

constraints are the upper bound on H, the lower bound on bx and by

and the compatibility bounds between tw and by, and tw and bx.
x y



Chapter IV

ALTERNATE STEP

hol Distances to Side Constraints

Since a new trial design is obtained from the equation

p

the distance to any one of the design para_ter bounds may be

obtained by setting Dq+l equal to the bound value and solving for
P

t using the present values of Dq and @p (The direction cosinesP

@p where p goes from 1 to 6 correspond to ts, H, bx, by, t w , and
x

tw 9 respectively). The distances to the bounds are given by
Y

the following equations :

Maximum Depth

H -H

t - max (4°!)
@2

Maximum y,,, Stiffener Spacing

(by)max - bt = _ (b.2)
@b

Minimum x Stiffener Spacing

b - (bx)
t = x min (ho3)

- @3

or
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The first of these is to the fixed bound (bx)mi n but the second

is the compatibility bound between b and t . Both of these
X W

Y

must be checked since either may give the shorter distance.

Similarly for the minimum y stiffener spacing

or

b - (by)mint = Z (4.5)

" _4

b - t
y w

t - x (4.6)
_5 " _4

Minimum Width of Stiffeners :

x direction

t - (t)
x x min

- _5
(4.7)

y direction

tw - (t)
y y rain

" _6

Minimum Sheet Thickness

(4.8)

t

Minimum Depth

t

t _.

ts - (ts)_n

H - t
S

_i " £°2

W

pab s

or

(when H

(h.9)

(h.:o)

is dependent variable )

(4,II)
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t

W
H
,,, pab

- cpe
(when t s is the dependent

variable) (ho12 )

The above distances do not all apply simultaneously. If

one of the direction cosines which appears in the denominator

corresponds to the dependent variable (i.e., the variable being

used to adjust the weight so that it remains constant) the ex-

pression for t is not valid and is skipped. Since in the case of

the H, t s compatibility bound it is possible to encounter the

bound when H or t is the dependent variable substitute distances
s

are used here. When H is equal to ts the plate is solid and

W
H = t -

s pab "

It is also possible to encounter the stiffener spacing

stiffener width compatibility bounds when one of these variables

is the dependent variable, but this condition is encountered

infrequently and is only taken care of by rejecting an incorrect

design using a design parameter side constraint check.

The shortest of the applicable distances are the ones which

bound the design parameters in the given direction. Two values

are obtained# one in the positive and one in the negative direc-

tion. (See Fig° 6).

After the maximum distances of travel are obtained the trial

distance is then selected and the new trial design computed° Two

methods are used in the different programs to select this distance°
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One is to use fixed fractions of the total distance of travel and

the other is to use random fractions. Because of the fact that it

is better to use a large number of random directions checking only

a few designs along each direction, it is felt that using random

fractions is the better method. This makes it possible to obtain

a more complete coverage of the space.

4.2 Projection to Weight Surface

In all of the synthesis techniques described here but

Compromise II, a projection is made from a proposed design point

to the weight surface parallel to one of the coordinate axes.

axis is the axis of the dependent variable in alternate step.

value of this variable _md then using the value of the proposed

design of the other five variables in this equation°

t
S

These equations are the follo_-ing:

t t t t

w____+ H _ __{_x_ __X_+ (-5--+ )
p ab b b

y x y x

t t
W W

x) (I - b--X-)(I - --_-
y x

H

t t

W (I Wx w
_b ts --5- ) (1 - b--X-)

y x

x) (1 __Z)I- (i - -B-- - b
y x

This

The
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b
X

t

t (I b_ )
Y Y

t

ts)/ (H - ts)] --_-
Y

b
Y

t

tw x (1- -_ Y- )
X

uJ_ , ,.

t

(p-'_-a" ts)/(H-ts) _ _..Z_Y
b x

t = b
y

t

/<w <H =I
) / - ts)-

p a---T" ts bx >

(i - __7_,.)
b

Y

t -- b
X

Y

t

(p-_a " ts)/ (H- ts) by

(1 b
Y

4.3 Direction Scaling

In the later programs_ Alternate Base Planes Method and

Tangent Plane Method, the random numbers obtained are not used

directly to determine the unit random vector, but are first

multiplied by a scale factor corresponding to the appropriate

design parameter. (see Ref. 2) Two methods of scaling are used,
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but only the first is used in the tangent plane method.

The first method is to scale them according to the range

on the design parameters. This does not take into account the

compatibility bounds but only the fixed maximum and minimum bounds_

thus the scale factors are :

Hma x - (ts)mi n for H and ts

(bx)max - (tw)min for bx and tw
Y Y

(by)ma x - (t) . for b and t_Xmln y wx

The reason behind this type of scaling is to obtain a uniform

distribution of search directions over a region which is bounded

by differing dimensions. A two dimensional example is presented

in Fig. 7. This figure does not present data but only illustrates

the effect° With no scaling the directions are characterized by

a uniform angular distribution about the design point. It is thus

difficult to investigate designs near (bx)mi n and (bx)ma x. The

scaled directions yield more directions of travel in the longer

dimension of the space and allow more designs to be investigated

at the extremities of the parameters with the larger range.

The second method is to choose scale factors based on the

relative magnitudes of the final design parameter of previous

synthesis problems and on the range of the parameters of the

present problem. These factors are the input to the program.
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Chapter V

SYNTheSIS TECHNiQ_S

5.1 Several different schemes were tried in an effort to obtain

an efficient means of optimization. A discussion of these is

presented here in order of their development. For the purposes of

discussion these have been given names. These are Compromise II,

Sheet Thiclcaess Method, Modified Sheet Thickness Method, Alternate

Base-Planes Method, Point Saving Method and Tangent Plane Method,

all of these methods assume that relative minima with respect to

the weight surface do exist and all employ some type of search

technique for the alternate step move.

In each of the alternate step techniques a selection of a

random direction in the space is used after this line is deter-

mined a selection of a distance along this line is made° Since

the side constraints on the design parameters are all linear they

are hyperplanes in the design space, the acceptable region with

respect to the design parameter bounds does not possess relative

minima. Because of this it is possible to solve for the maximum

possible distance of travel by taking the minimum of the distances

to the design parameter bounds. This is done separately in both

the forward and reverse directions° Distances of travel for the

redesign are then made as fractions of the distances determined

as above.
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5.2 Compromise II

This method is similar to the Compromise II method which is

described in Ref. !o The differences being the method of maximum

distance selection_ the accelerated steep descent_ and the number of

design parameters. A steep descent in the direction of the nega-

tive of the gradient to the constant weight surface at the present

design point is used. (see Steep Descent) No distance of travel

is solved for but an arbitrary increment is used. The alternate

step is made by solving for chord distances across the constant

weight surface in a plane passing through the t s axis and a random

vector in the base normal to the t axis.
s

This direction of steep descent is much better than the

direction used in the sheet thickness method, i.e._ parallel to the

ts axiso The alternate step is complicated and may yield in-

determinate distances in cases where the chord is very close to

lying in the weight surface. For these reasons no attempt was

made to obtain data from this program and another means of alternate

step was adopted,

_°3 Sheet Thickness Method

In this method the steep descent is made parallel to the ts

axis° The alternate step is made by changing the design parameters

in the base normal to the ts axis and then solving for the value

of ts to project the design on to the constant weight surface

(see Section h. 2)
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This method of steep descent was found to be very in-

efficient.

5.h Modified - Sheet Thickness Method

This method combines the better features of Compromise II

and the sheet thickness method. The gradient steep descent is

used here with the alternate step projected from the base normal

to the t axis.
s

This method is much better than the sheet thickness meth0d_

because of the steep descent. However, because of the method of

projection, the alternate step does not give a uniform search of

the weight surface. For this reason it is possible for the

program to arrive at a design point where the search is primarily

carried out over a srm%ll region of unacceptable designs. When

this occurs it is practically impossible to find a new acceptable

design point.

5°5 Alternate Base Planes Method.

In an attempt to solve the problem encountered in projecting

from one base plane to the weight surface, the program was changed

to alternately project from all six of the possible base planes.

This program is the same as the previous one, with gradient steep

descent and base plane alternate step except that the base plane

used each tim_ is changed. This is done in cyclic order starting

with the base normal to the ts axis and proceeding in the follow-

ing order: ts, H, bx, by, tw and tw (see Fig. 8). This order
x y
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is not used in the special case where (H - _ ) __ t s __ H.

In this case projection always takes place parallel to the t s

axis. The direction cosine of H is set to zero and consequently

t s will change by only a very small amount in alternate step.

This is done in order to allow a search of only the bx, by, tWx,

and t parameters. The proper combination of these parametersw
Y

must then be found so that the gradient steep descent will take

the design away from the ts, H compatibility bound.

The first steep descent _hich moves directly toward the

minimum weight corner is used to avoid hitting the ts, H compati-

bility bound and in most cases is successful. When it is not

successful finding the right combination of bx, by, t w , and t w
x y

can be time consuming°

This program is much more efficient than the ones described

previously and is the one used to obtain the numerical results

presented in the following section.

5.6 Tangent Plane Method

This method is another attempt to improve the search of the

weight surface. Random directions in the design space (six

components)are projected onto a plane tangent to the weight sur-

face. The random vector is given by R and the tangent vector_ T_

isthengivenby

normal to the weight sttrface.

° n) n , where n is the unit

Here again after the distance of

travel is selected, the design must be projected in some manner
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from the tangent plane to the weight surface. The way in which

it is done is the same as in the previous method. That is to

project parallel to one of the coordinate axes, the axis used

being changed each time.

5.7 Point Saving

Since all the synthesis methods used here are search

techniques, it is desirable to make use of as much of the informa-

tion obtained in this search as possible. In all of the methods

described previously the only information which is used is the

present design point and the location of the design parameter

bound So

In this method acceptable design points are stored and used

to generate directions of travel. The directions are the vectors

between the present design point and the stored design points.

These directions are then used in the same manner as the random

directions. This method is used in conjunction with both the

tangent plane method and the alternate base planes method. This

is done only after the search using random directions has failed

in a sufficient number of directions_ (lO).

The motivation for the development of this method is the

desire to be able to locate possible "pockets " or "troughs "

in the acceptable region of the design space. These are regions

where the designs continuously remain in the acceptable region

below the occupied weight contour. The idea is that a direction
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of travel between two points in the same "pocket " Or ',trough "

might serve to cause a search through the"pocket_' or that a

direction of travel from one pocket to the next would locate a

pocket which had been previously searched but which might yield

better designs, and would be difficult to locate by using random

vectors.

This method caused no significant change in the operating

efficiency.
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Chapter VI

NUmeRICALRESULTS

Four synthesis problems are presented here. Results obtained

by starting from two different design points are presented for each

case. Each column in the applied loads matrix represents one load

condition, i.e.

IN] o

D

N N ... N
X 1 X 2 X n

N N ... N
Yi Y2 Yn

N N ... N
xY i xY 2 xYn

Similarly each column in the behavior function matrix

represents the behavior for one load condition, i.e.

BF =

GY i (Dp) GY 2 (Dp) o.. GYn (Dp)

SX i (Dp) SX 2 (Dp) ... SXn (Dp)

SY i (Dp) SY 2 (Dp) ... SY n (Dp)

GBF I (Dp) GBF 2 (Dp) ... GBF n (Dp)

LBPs (Dp) LBP 2 (Dp) ... LBP n (Dp)

LBX i (Dp) LBX 2 (Dp) o.. LBX n (Dp)

LBY 1 (Dp) LBY 2 (Dp) ... IBY n (Dp)
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where

QY (Dp)

SX (Dp)

SY (Dp)

GBF (Dp)

_P (Dp)

Lsx (Dp)

L_Y (Dp)

= gross yield,

= stiffener yield (x direction)

= stiffener yield (y direction)

= gross plate buckling

= local sheet buckling

= local stiffener buckling (x direction)

= local stiffener buckling (y direction)

weight in pounds.

it is within I +

The dimensions of the plate are all given in inches and the

A behavior function is considered bound when

¢ , and the design is acceptable when the

behavior function is less than 1 + ¢ .

The upper bounds on the design parameter are

(H)ma x

(bx) n_ax

_D_U)_ = 1(by)max '

\x
The lower bounds on the design parameters are
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 '(ts)min

bI._

bLy

In the above equations, (bx)ma x and (by)ma x are the

maximum stiffener spacings consistant with equivalent plate

analysis and are taken to be a/5 and b/5 respectively_ bLx

and bLy are the larger of (bx)mi n and tw , and (by)mi n and
Y

t x respectively. Note that (H)max, (ts)mi n, (tw)min'x

(tw)min, (bx)mi n and (by)mi n maybe assigned based on
Y

fabrication limitations.



CASE (1-3)

INPUT DATA

p = O.lO1 lbs/in 3

= 0.32

¢ = 0.0001

6o = O.O1

(ts)mi n = O.005

(tw)min = 0.OlO
X

(t)rain : O.OlO
Y

TRIAL DESIGNS

Point A

t s = 0.30

H = 0.80

b = 5.00
X

b = 5.00
Y

t = 4.00
X

t - 4.00
Y

-24-

-0.30

-0.40

+0.20

= 72 ksi
O

a = 40 in.

b = 30 in.

E = 10.5 x lO 3 ksi

H = 0.80

(bx)mi n = 2.00

(b) = 2.00
manY

Point B

t = 0.30
S

H - 0.80

b -- 5.00
X

b = 5.00
Y

t = 0.25
W
X

t = 0.25
W
Y
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CASE (I-3)

FINAL OUTPUT

Point A Point B

t
8

H

b
X

b
Y

t

X

t

Y

W

= 0.0385

= O.8OOO

= 2.0001

= 2.8465

= 0.0778

= 0.0656

= lO.13o5

t
S

H

b
X

b
Y

t

t
W

Y

W

= o.o355

= 0.7828

= 2.0000

= 2.0002

= 0.0260

= 0.0909

= 9.5456

m

0.1486

0.0702

o.o875

1.0000

0.9992

o.o87o

O.1763

EBF B1 =

0.1609

0.O921

0.0799

0.9999

0.9999

0.9823

O.O711



CASE (l-T)

INPUT DATA

p = 0.160 lbs/in s

= 0.29

e = 0.0001

s = 0.005
0

(ts)min = 0.005

(t)min = o.oio
X

(tw)mi n = 0.010
Y

TRIAL DESIGNS

Point A

t = 0.200
S

H = 2.50

b = 6.00
X

b = h.oo
Y

t = 1.00

X

t = 1.O0

Y

-0.80

O.00

0.00

= 120 ksi
O

a = 70 in.

b = ho in.

E = 16 x lO 3 ksi

H = 2.50
max

(bx)min = 2.00

(by)min = 2.00

Point B

t = 0.40
S

H = 2.50

b = 2.00
X

b = 2.00
Y

t = 0.50

tw 0.50
Y



CAS_ (I-T)

F_ _T_T

Point A

t = 0.0308
S

H = 1.0103

b - 4.8420
X

b = 2o0002
Y

t = o.o471

X

t = 0.0337

Y

W = 27.114

m u

0.1237

0.1237

0.0000

0.9967

0.9999

0.9567

o.oo0o
B m
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Point B

t = 0.0447
S

H = 1.1494

b = 2.0058
X

b = 3.2638
Y

tw = 0.0404
X

tw = O.OlOO
Y

W = 28.578

m

O.llh3

0.1143

0.0000

o.98o5

0.9950

0.9768

0 .O000
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oAs_,(1 - s_)

INPUT DATA

p = 0.I01 lbs/in s

b = 0.32

e : O.O001

8 : 0.005
O

= 72 ksi
o

a = 100 in.

b = 20 in.

E = 10.5 x 103 ksi

-0.50

-0.50

+0.50

(ts)rain

(t)_n
X

(_)min
Y

= 0.005

= 0.010

= 0.010

H = 2.50
max

(bx)min = 2.00

(b_min = 2.00

TRIAL DESIGNS

Point A

ts = 0.30

H = 1.O0

b = 10.O0
X

b = 2.50
Y

t = 1.25
W
X

t = 5.00
W
Y

Point B

t = 0.50
S

H = 1.50

b = h.O0
X

b = 3.00
Y

t = 1.00

t = 1.O0
W
Y
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CASE (1 - SL)

FINAL OUTPUT

Point A

t = 0.0522
S

H = 0.9289

b = 2.6440
x

b = 2.4510
Y

t = 0.0343

X

t = 0.0337

Y
W = 15.243

Point B

ts = 0.0499

H = O.7901

b = 2.0330
X

b = 2'9877
Y

t = 0.0305
w
%

t = o.0444
Y

w = 14.844

0.2549

0.1077

0.1096

O.853O

1.00oo

0.9773

O.9992

EBF B] =

m

0.2664

0.1208

O.lO51

o.9954

0.9999

0.9432

0.4487
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CA_ (3-2)

INPUT DATA

p = 0.276 lbs/in 3

= 0.283

¢ = 0.0001

80 - 0.01

= 150 ksi
O

a = 70 in.

b = 50in.

E = 30 x 103 ksi

m

-0.30

-0.30

0.00

+0.50

-0.60

-I.00

0.00

- 0.40

(ts)mi n = 0.005

(_)m= - o.olo
X

(%)_= = o.olo
Y

H = 0.50
max

(bx)mi n = 2.00

(by)rain = 2.00

TRIAL DESIGNS

Point A

ts = 0.40

H = 0.50

b = 5.00
X

b = 5.00
Y

t = 4.00
W
X

t = 4.00

Y

Point B

ts = 0.40

H = 0.50

b - 2.00
X

b = 2.00
Y

t = 1,95
W
X

t - 1.95

Y



CASE (3-2)

FINAL OUTPUT

t
S

H

b
X

b
Y

t
W
X

t
W
Y

W

Point A

= 0.0474

-. 0.5000

= 5,2688

- 3.8928

- 0.6604

-- 0.9544

- 185.75

-o.o158

0.0161

o.o155

0.8426

0.2607

0.0001

0.0000

o.o158

0.o16o

o.o154

0.8430

0.0935

0.0000

0.o003
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o.2h84

0.0268

0.0309

0,6407

0,3687

-0,0002

o.oooi

o.2485

0.0268

o.0309

0.6412

o.o48o

-0,0001

0. OOO6

Point B

t s = 0.0474

H = 0,5000

b = 2.0077
X

b = 5.1o94
Y

t = o.8678
wx

t = 0.3634

W = 185.76

o.111f

0.0537

0.0000

1.0000

0.358o

0,0003

0.0000

o.lnf

o.o536

0.0000

1.0000

0.2755

0.0002

0.0000
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CASE (3=2)'

INPUT DATA

p = 0.276 lbs/in 3

!' = 0.283

e = 0.0001

6 = O.O1
O

= 150 ksi
O

a = 70 in.

b = 50 in.

E = 30 x 103 ksi

IN] =

m

"0.30

"0.30

0.00

_.50

"0.60

-I.00

0.0

(ts)_in = 0.005

(t)min : O.Ol
X

(t),_ : O.Ol
Y

TRIAL DESIGNS

H : 2.50
m&x

(bx)mi n : 2.00

(by) rain : 2.00

Point A

t : 0.40
S

H = 2.50

b = 5.00
X

b = 5.00
Y

t : 4.00
w
t : 4.00

Y

Point B

t = O.hO
S

H : 2.50

b = 2.00
X

b : 2.00
Y

t = 1.95

t : 1.95
Y
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cAs_ (3-2),

FINAL OUTPUT

Point A

t = 0.0432
S

H = 0.9866

b = 2.o5o4
X

b = 4.6627
Y

t = 0.0726
W
X

t = 0.0287
W
Y

W = 68.499

Point B

t = 0.0475
S

H = 1.0128

b = 2.0451
X

b = 9.0909
Y

t = o.1318
X

t = 0.0291

Y

W = 72.459

BFA_ =

_.o35o

0.0345

o.o354

0.8262

0.3552

o.o5o8

o.4586

-0.0326

o.o325

0.0327

0.7616

0.3125

O.Olh9

o.4597

o.2894

0.0576

0.0709

0.6167

o.1971

-o.o846

0.9172

o.2645

0.0542

0.0653

o.5438

o.1357

-0.0248

o.9194

0.1570-

O.ll51

0.0000

0.9783

1.0000

0.1692

0.0000

0.1457-

O.lO85

0.0000

0.8987

1.O000

0.0497

0.0000_



Chapter VII

DISCUSSIONOF NUMERICALRESULTS

7.1 Comparison with Symmetric Synthesis Results

Two of the cases presented here offer a comparison with the

symmetric synthesis results reported in Ref. 8. These are cases

(1-3), and (3-2). in Case (1-3) a weight saving of 13 percent is

obtained from 10.94 lbs to 9.54 lbs. and in case (3-2) only a 0.87

percent weight saving is obtained. It is felt that in cases where

the loading and the overall plate dimsnsions are more unsymmetric

a higher weight saving could be obtained. By looking at Case

(1-T) it is seen that unsymmetric designs are obtained. This

case is loaded in one direction onlyo If the plate is forced to

be symmetric it might be expected that there would be a large

weight penalty. It should also be noted here that the stiffening

in both final designs is in the longitudinal direction and that for

point B, tw is at its lower bound. In Case (1-SL) with a
Y

symmetric load and highly unsymmetric over all dimensions the

final design points are also unsymmetric but points A and B are

unsymmetric in opposite directions.

7.2 Influence of the Depth Parameter

All the cases presented here show the influence of H on the

design of waffle plates. The maximum depth is set reasonably high

in all cases except (1-3) and (3-2). In the cases with the

large maximum depth it is seen that the full depth is not



utilized in the final design and that in these cases the final

design is limited by gross buckling, local plate buckling and

stiffener buckling in at least one direction.

In case (1-3) for point A the full depth is utilized but for

point B it is not but stiffener buckling is an active constraint for

both designs.

In Case (3-2) with a low depth limit the full available depth

is utilized but stiffener buckling is not active and the only

active behavior constraint is gross buckling in the third load

cond iti on.

Case (3-2) w is the same as case (3-2) except for the large H

bound in Case (3-2)'o Two facts should be noted about these cases.

One is that by increasing the depth from O._ inches to approximately

loO inches it is possible to decrease the weight from 18%.75 lbs to

68.5 lbs. but without using the full depth available. The other

is that in case (3-2) only the third load condition is active but

in Case (3-2)' stiffener buckling in the second load condition is

active along _lth local plate buckling and gross buckling in the

third load condition°

7.3 Convergence

Case (3-2) is the only case presented here where the two

synthesis paths can be considered to have converged to the same

design. At first glance this does not seem to be true but on

exa_im_tion of the -_- ratios for both points they are the same.
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t t
W W

x - 1.7o __X_
-T-- b

y x

= 1.81

This is because the final design is gross buckling limited and only

depends on the equivalent plate stiffness. In this case any design

with these ratios for _xt/by and wt/b x and the same values of the
Y

other design parameters which does not cause violation of other

constraints would be an optimum.

The reason that Case (3-2) converged while the others did not

is that it is bounded only by one constraint while the final designs

obtained for the other cases are bounded by more than one constraint.

In reasonable running times the program is thus not capable of

moving in the alternate step mode once the design is highly con-

straine d.
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Chapter VIII

CONCLUSIONS

8.1 Capability of Program

The development of a synthesis capability for six parameter

waffle plate design can be considered partially successful. It

cannot be considered completely successful because of the inability

to achieve convergence to the same design in all cases. However_

the designs obtained can all be considered efficient designs.

8.2 Relative Minima

While it is not shown that relative minima do exist in the

design space, it has been assumed that they do. This seems only

likely since the existence of relative minima was shown by plotting

in the three dimensional problem° (see Ref. l) The inability to

converge can be interpreted as the inadequacy of the methods of

alternate step to solve the relative minima problem. This is not

surprising when one examines the way in which the relative minima

problem is handled. This is to randomly search a subspace of

dimension n - 1 = 5. Thus reducing the problem of searching a

sixth dimensional design space to one of searching a finite

number of fifth order spaces. Keeping this in mind, what has

happened here might be expected. That is if the relative minima

pockets are large or if there is a large acceptable region near

the optimism these methods wou!d be expected to work with some

success. This is seen to be true in case (3-2) _here there are
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many optimum designs. In the other cases presented_more than one

constraint is active and achieving a redesign which is not in

violation is much more difficult. Thus it is not practical to

randomly search an n- 1 subspace when n is as high as six.

8.3 Alternate Step Methods

In order to solve the relative minima problem using search

methods of alternate step, better m3thods of selecting the alternate

step direction must be developed. A useful approach to this problem

is to look at it from the point of view of eliminating as many un-

desirable designs as possible rather than trying to develop a method

which will select the one best direction. Several observations can

be made concerning random directions which should be considered in

developing methods of this type.

The first is that the distance traveled along any direction

should not be so great as to take the design from the acceptable

region with respect to design parameter bounds° This is done here.

(see Chapter IV).

The second is the projection of the direction on to the merit

surface. If the directions are all selected in one plaue_ the

angle between this plane and the tangent to the m_rit at the point

in question has the effect of distorting the distribution of the

selected directions. This is the reason for using six planes of

projection in the Alternate Base Planes Method and the reason that
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six random direction cosines have to be used in the Tangent Plane

method instead of only five o

The third is direction scaling. Since in any problem the

design parameters may vary over different ranges in order to uniformly

search the acceptable design parameter region the direction cosines

must be scaled according to these variations. While the overall

design parameter variation remains fixed_ the acceptable design

parameter variation may change during the solution of the problem

because of their interdependence through the merit equation, This

is the reason for adopting the second method of direction scaling

mentioned in section 4o3. In this second method no definite

criterion is adopted to select scale factors and therefore it

relies on the intuition of the operator. It is thus dangerous in

the sense that used with abandon the operator may be doing the

design himself thus defeating the purpose of writing a synthesis

program. This method does not have any added advantage and it is

felt that a more definite criterion should be developed,

8.4 Efficiency of Operation

Aside from having the ability to solve the synthesis problem

it is important to have an efficient method so that the amount of

computer time consumed is not excessive. Running times for the

results presented here ranged from four to eight hours per path on

the Burroughs 220 Computer. This corresponds to from about one

thousand to two thousand design cycles, which is excessive when

compared with the three or four used in practice° As discussed
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above better method of alternate step would certainly improve

this efficiency_ but the methods of steep descent should also be

investigated.

8.5 Steep Descent

In Refo 1 it is pointed out that the convergence to a bound

design in steep descent was slow. In the work done here an

accelerated steep descent mode of travel is used. This is found

to have no effect on the convergence time since the distances are

in general short and the major portion of the running time is

spent in refining the increment so that a bound design is

obtained.

The gradient method of steep descent is the most efficient

of the three used here. The corner direction is used only as a

first try in order to avoid hitting the H, ts compatibility bound.

This bound is very difficult to move away from. The only way in

which the program accomplished this was to arrive at a design_ in

alternate step_ where the stiffener spacings were enough larger

than the stiffener widths to allow gradient steep descent away

from this bound.
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AppendS{ !

PLATE ANALYSIS A/_D SIDE CONSTRAINTS

A.I.I This appendix is a presentation of the equations necessary

to write a computer program which analyzes a given rectangular

waffle plate with orthogonal stiffeners which satisfies all side

constraints. No detailed derivations or explanations of the

equations are presented.

A.I.2 Orthotropic Plate Equations

By using equivalent elastic constants the gross instability

of the waffle plate _my be treated as that of an orthotropic plate

with the same boundary conditions.

have been derived in Refo 3. o

Formulas for these constants

The waffle plate has simply

supported edges and is loaded by any combination of inplane loads

Nx_ Ny_ and Nxy. The interaction expression proposed in Ref, '11&)

has been used for the work presented here° That is

N N N 2

( x_1_X r _cr __cr

For the case of biaxial loading with no shear the expression

N N
x y+ = 1 (A.2)

'_x'cr

gives an exact solution to the orthotropic plate equation if bohh

(Nx)cr and (Ny)cr are required to be in the same buckling modeo
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To find (Nx)cr and (Ny)cr

the following forms •

the above expression is written in

Nx (Nx)r (A.3)
2 2

a n

where

N y (Ny)_ r (A.4)
2 2

I + (a

(Nx) r = _ _ m 2 b 2 2n 2 D 3 +V(__)n4 a 2 D2 ]

b 2 [ (_) 2 +_fD-i D2 m

(Ao5)

(Ny) r
a 2 _ D2 n 2

(A.6)

N

= _: (:.7)N
X

and (Nx)cr and (Ny)cr are the values of the above for the critical

mode given by mand n. (see Ref. 4) The critical values of m and n

are obtained by finding their values such that the smallest

positive value of Nx is obtained when N is compressive or N
x y

zero, or N y when Nx is tensile or zero. DI and D2 are the

flexural rigidities and D 3 is the torsional rigidity.
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Ref. 5 presents expressions for critical values of shear

load N :
xy

C h_//D1 D2 3
N - a (A.8)

xy (b)2

where (Ca)cr is the minimum of the two following expressions:

9 _ (q, Y) + _ (q, 3) ...... + _ + 3

[ ]}-'/'
9_ (q + 2, I) + 25_ (q + 2, 3').... (A.9)

which holds for s_mnetric buckling with q odd or antisymmetric

with q even. For symmetric buckling with q even or anti-

symmetric buckling with q odd.

{[ l_h I _,} (q + l, l) +C - {2a _ (q + i) 9

2

9 ][ q25 _ (q + i, ])' (2q + i)2_ (d,2)"

(2q +

(q + 2)2 ] -I/2
3)2 (q + 2, 2) }

+

(A.IO)

whe re

(m,n)

b

a

h 2 (m_)2 2 nh(m_) + J, n +
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Aol.3 Equivalent Elastic Constants

The equivalent elastic constants used here are specialized

from those given in Ref. 3. The assumptions and restrictions

required to arrive at these expressions are stated in Ref. I°

The expressions for the flexural and torsional rigidities are:

DI = EI.I3 [Ix -

2

_2
S

D 2 = EH 3 [ly

2
A A

s y _(_y)2]
S

- 2

2 K 2 xy
S

where

I
X

t 3

1 (s)
12 (1 - 2) H

I
Wx 1

+ +

byH 3 h Ax2(l - b2)

t
S

D

H

I
Y

A A

2 1 Wx_x) + _____
(b H _ b H

Y Y

1

12 (I- 2)

A

i 2
t3

1
(__s) + __7_ +
H H3 4 A2 (I- 2)

bx y

t
s
H

A
W 2

X

A A

x y x
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- 2 2

._As = A A - A
x y s

A

x 2A b H
x y

A

= 1 wy_
y _A b H

y x

A
A w
s X

x _ b H
Y

A
A w
s ___y_A - -- +

y _ b H
X

t
= ...._ s

As 1 - 2 H

m 2 - 2
I = I A

S, s s + AsA Ay ky

1

Then within these constants the following definitions are needed

to obtain the equivalent elastic constants in terms of the design

parame ter s :

x 1

b H3 12
Y

(1 -

t
t 3 w

s) _
tI b

Y

I
w

b H3
x

t s

1 (1 -_)

t
w

x

A

w
b H
Y

= (1 -

t
t w

__s) ..___x
H b

Y
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A
W

y
b H
X

S

t
t

s)__X
(I - _- b

X

t 3

A.l.h Local Buckling

Two modes of local buckling are considered. One is buckling

of the backup sheet while the stiffener remains straight the other

is buckling of the stiffener while the backup sheet remains flat,

Buckling of the backup sheet is considered as buckling of a

rectangular isotropic plate with dimensions of the distances bet-

ween the stiffeners and the thickness of the backup sheet. Here

again the interaction expression (AI) is used. The critical values

for the plate may be obtained by setting DI = D2 = D3 = D and

making proper substitutions for a and b in the expressions

(A.3 - A.7) for the orthotropic plate. These become :

t
2 n___b -

D [ m 2 (by - w )2 2 _( x= x + 2n + 2

Nx (by - tw)2 bx - tWy m by
X

t

2]t ) FX
W

X

(A.11)

t
2 b - w 2

D In 2 (_X Z) +
Ny (bx tw )_ . tw" Y x

Y

3
Et

S

12 (I - 2)

m4 b -tw 2

__(by x) ] F
n x " tw Y

Y

(A.12)
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where F and F are factors which take into account that only
x y

a portion of the load is carried by the sheet

t
W

H ) __/_y
Fy-- i - (i "tq

t

Fx 1- (i i) w_
= - ts by

F

_ _ x_s _-
Y

With similar substitutions the shear buckling equation becomes

hc D
a

_T (Aof3)
b

where in this case b or

b - t andtheC

y wx a

is the smaller of the values b - t
X W

Y

are the same as before with

= _

2
2

p (mgn) = [(m_) 2 + n
a

It should be noted here that all the shear is considered to

be carried by the backup sheet and thus there is no reduction

factor.

The stiffeners are considered as rectangular plates simply

supported on three edges and free on the other. The critical

values for buckling of the stiffener are given by the following

expression: (see Ref° 6)
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2

12 (i - I%2) x

H-t

b s]
Y

I •

t 2(H- s)

H - ts 2 0o_25][ (b -'t ) +
y wx

2

= --71 E

(Ny)cr 12 (I - I%2)
( + b

y Wy x

I

(Ao_)

H ts 2

y w
X

(AolS)

A.Io5 Material Yield

The material yield criterion is employed as a cutoff to the

elastic buckling analysis. Three types of yield are possible°

The stiffener in the x direction may yield_ the stiffener in the

y direction may yield or the backup sheet may yield° The x

stiffener yield condition is

b

(_o Nx B t + t w (H _ ts)
y s x

The y stiffener yield condition is

b

I x s (AolT + t (H -t )"_o = bx ts w
Y

where the absolute value signs are used to take into account

tension or compression° By substituting the principle stresses

into the distortion energy yield criterion the condition for

yield of the backup sheet becomes: (see Ref@ I)
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2 2 2 2
(Y -- (Y (Y + (Y + 3 _ - (Y
x x y y xy o

Then in terms of the load and the design paran_ter this becomes

2 2
N b N N b b
x y 7 _ x y y x

(byts +t w (H ts)) _ (by- ts + tw (H- ts))(bxts +tw (H-ts))
x x y

2 2
N b N 2

+ y x (__ 2 (A.18)2+3 ) -- a°
(b ts + t (H- ts)) s

Y

A.I,6 Side Constraints

The side constraints which must be imposed on the plate

designs arise from four different situations. These are

I. Bounds imposed by the limits of the manufacturing

processes_

2. Bounds imposed by the applicability of the analysis,

. Compatibility bounds to exclude physically absurd

designs,

h. Bounds imposed by the use of the plate.

The bounds imposed by the limits of the manufacturing

process are lower bounds on stiffener thickness and spacing. The

bounds imposed by the limits on the analysis are the minimum

number of stiffener.

Compatibility bounds arise where the stiffener width must be

less than the corresponding stiffener spacing and the thickness of

the sheet must be less than the total depth of the sheet.

The bound imposed by use of the plate is the total depth

of the plate.
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Appendix II

COMPUTER PROGRAM

A.2.2 The description of the computer program used for

production is presented here. This is the program using the

alternate base planes method. This and the other programs were

written in Runcible (see Ref. 8) compiler language.

The required input for the program is the following list in

Runcible notation:

A.2.2 INPUT DATA

YI = ts

Y2 -- H

Y3 = b
X

Y4 - b
Y

Y5 =
X

Y6 = tw

Y7 = E

Y8 = p

Y9 =

YIO = ¢

YII = _o

YI2 --
0

Y13 - a

Y.4

DESIGN PARAMETERS

PREDETERMINED CONSTANTS

YI4 = b
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Y26 - Y30 = N
X I

Y31 - Y35 = N
Yl

_36 - Y4O - N
xy_

Yhl (ts)min

Y42 = H

xm_

Y46 = (t_)_in
Y

N
X 2

N
Y2

N
xy2

@@@

@@@

@@@

C68 = (bx)mi n

C69 = (by)mi n

C70 = ts scale factor

C71 = H scale factor

C72 = b scale factor
X

C73 = b scale factor
Y

C74 = tw scale factor
X

C75 = tw scale factor
Y

I13 = NUMBER OF LOAD CONDITIONS

A typical set of input data is presented in Fig. 9.

A. 2.3 OUT PUT DATA

The design parameters are the same as above (Y1-Y6). The

behavior functions are the following :

Y53 - Y57 - GY (Dp)

Y58 - Y62 = SX (Dp)

Y63 - Y67 = SY (Dp)
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Y68 - Y72 = GBF (Dp)

Y73 - Y77 = LBP (Dp)

Y78 - Y82 = LBX (Dp)

Y83 - Y87 = LBY (Dp)

115 - Base Plane Indicator

Y25 - Weight

A typical set of output is presented in Fig. lO.

A.2.4o The operation of the program is presented in Figs. ll and

12. The list below provides additional information concerning

this operation.

G , refers to acceptable design

NG , refers to unacceptable design

I , is a cycle counter (1 is the initial cycle)

N , no

Y , yes

UB , means unbounded

8 , steep descent increment

8s , smallest steep descent increment

allowed, a fraction of 8, 1/10, 1/lO0, 1/lO00 or 1/lO,O00.

This is an option on control switches 1 thru 4 respec-

tively.

t _ is the distance of travel to the side constraints.

When running the program one of the control switches one thru

four should be set to determine the increment tolerance in steep
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descent. The program is in two segments with a s_all data

processing portion in the first segment. Program control switch

5 will cause segwnt one to be read when the program is operating

in segment two. After reading the data at the beginning of

operation the data is then printed. All designs which are tested

for behavior function violation in the alternate step mode are

printed (locations Y1 - Y6 as above). The behavior function for

these are not printed. In steep descent only the last bound

design is printed and the behavior functions are printed for this

design. A listing of the computer program follows.
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1 + pOO01700_ +_N4ONNnOnO +_O_NONOONq +5150NnONON +51_0OOOOnN +5140n00000 +5140000000

I + 200077001 +5530000000

i + _non_voq7 +_np7_NonOn +_ogR_OoOoo +471onnonoq +_olOqnO000 +5_15000000 +5270000000 +_250000000

l + 200267003 -50300000n0 +5050000000 -5110000000

I + 200_17nn3 -5O30000000 -5060000000 +5000n00000

I + 200367003 +5000000000 -5110000000 -5040000000

I + 20041700p +4850000000 +5050000000

1 + 200457002 +4910000000 +4910000000

l + B00687002 +5]20000000 +5120000000

1 + 30070700] +4QlOOOono0

1 + 30071700] +5010000000

i + 300727001 +5110000n00

1 + 300737001 +511OOOOOOn

1 + 3007_7001 +5010000000

l + 900757001 +5010000000

FIGURE 9 TYPICAL CASE OF INPUT DATA
I - I00137001 +0000000003



000 13004 RECALL RUNCIBLE PROGRAM FEB 19 17 39

+1200017007 +4947452284 +5049998960 +5152687526 +5138927718 +5066039628 +5095640880 +5530000000

-1200087007 +5027600000 +5028300000 +4710000000 +4910000000 +5315000000 +5270000000 +5250000000

-1200267005 -5030000000 +5050000000 -5110000000 +0000000000 +0000000000 +0000000000 +0000000000

-1200317005 -5030000000 -5060000000 +5000000000 +0000000000 +OOOOO00000 +0000000000 +0000000000

-1200367005 +5000000000 -5110000000 -5040000000 +0000000000 +0000000000 +0000000000 +0000000000

-1200417006 +4850000000 +5050000000 +5214000000 +5210000000 +4910000000 +4910000000 +0000000000

-1300687002 +5120000000 +5]20000000 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000

-1100134084 +0000000003 +0100250000 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000

-1200017_06 +4947452284 +5049998960 +5152687526 +5138927718 +50660_9628 +5095440880 +0000000000

-1200537003 +491578629_ +5024843201 +50]1115009 +0000000000 +0000000000 +0000000000 +0000000000

-]200587003 +49|6099?75 +4926833292 +4953666584 +O0000OO000 +0000000000 +0000000000 +0000000000

-1200637003 +491545270] +4930905402 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000

-1200687003 +5084262951 +5064074420 +5110000500 +0000000000 +0000000000 +0000000000 +0000000000

-1200737005 +502606930_ +5036866252 +5035799244 +0000000000 +0000000000 +0000000000 +0000000000

-1200787003 +_696969139 -4716161523 +4732323046 +0000000000 +0000000000 +0000000000 +0000000000

-1200837003 +4643699037 +4687398074 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000

-11001540_3 +OOnO000000 +0n00000000 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000

-1200254031 +5318575402 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000

-]700244075 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000 +0000000000

FIGURE I0 TYPICAL CASE OF OUTPUT
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=99 9UNCI 235

1 000000055000000010000000000900000000090
6. D : W= 7 8

2 RNG

6 1

6 1

6 I

6 1

6 l

6 1

6 1

6 1

6 1

6 1

6 1

6 1

6 ]l

6 l

6 1

6 1

6 1

6 ]

6 1

6 l

6 1

6 l

2 RNG

2 PCS

6 4

6 4

2 PCS
I 000
1 000

1 000
I o0o

1 0oo

1 o0o
1 000
1 000

1 000
1 000

1 000

1 000

1 00o
I 000

1 000

] 000

1 000
1 000

1 087

1 000

I 000

1 000

1 000

1 000

1 ooo

1 0oo

1 057

1 058

RANDOM NUMBER

0000 804]0180019

0001 80000_40020
0002 80000400018
0003 800004200]8

0004 90000100014

0005 80000140013

0006 90001400014

0007 00001490010

0008 00000480002

0009 800001200].2

0010 80000220012

0011 00000304899

0012 05000000000

0013 09677214091

0014 062_07_0481

0015 03849370523
0016 00000000007

0017 06843575629

0018 00000000000
0019 00000000004
0020 00033444352

0021 00000304313

END OF RANDOM NUMBER
PROGRAM CONTROL SWITCH TEST

oooo ooono49oooQ 81110400002 8000038_0n5 00001450000
0004 O0000qO4890 80000100007 00000304809 00000000001

END OF PCS TEST SUBROUTINE

3133

READ F

17=0 F

18=0 F

19=0 F

I0:0 F

II=3 F

12=I000 F

14=0 F

15=0 F

16=0 F

17=0 F

18=] F

19=117 F

20=0 F

21=0 F

23=0 F

24=0 F

87,10,0,I,113-1, F

C(79+IO}=Y(31+IO)/Y(26+IO) F

PUNCH C78 THRU C82 F

Y43=Y13/5 F
Y15=Y8XY13XY14 F

Y44=Y14/5 F
C53=Yll F
C5=(3.1415927)P2 F

C9=]./(I,-(YgP2)) F

PUNCH Y1 THRU YI4 F

PUNCH Y26 THRU Y30 F

13004
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059
080

082
O83

084
000
000

PUNCH Y31 THRU Y35
PUNCH Y36 THRU Y40
PUNCH Y41 THRU Y46
PUNCH C68 THRU C69
PUNCH I13 PUNCH I25

READ SEGMENT 2
SEGMENT 2

2
16 1
6 1
6 1

6 1
6 1
6 1
6 1
6 1
6 1
6 1
6 1
6 1
6 1
6 1
6 1

6 1
6 1
6 1
6 1
6 1
6 1
6 1
2
2

6 4
6 L,
2
1
1

1
1
1
1
1
1

1
1
1

1
1
1

1
1
1
1
1
1
1
1

000000055000000010000000000900000000090

6. D = W= 7 8
RNG

RNG
PCS

PCS
037

000
000
000
000
000
000
000

000
000
000

000
000
O45

O45
000
O46
O46
000
O47
000
O48

RANDOM NUMBER
0000 80410180019
0001 80000340020
0002 80000400018
0003 80000420018
0004 90000100014

0005 80000140013
0006 90001400014

0007 00001490010
0008 00000480002

0009 80000120012

0010 80000220012

0011 00000304899

0012 05000000000
0013 09677214091
0014 06250739481
0015 03849370523
0016 00000000007
0017 06843575629

0018 00000000000
0019 00000000004

0020 00033444352
0021 0000030k313

END OF RANDOM NUMBER
PROGRAM CONTROL SWITCH TEST

0000 '00000490009 81110400002 80000380005 00001450000

0004 00000304899 8000010000700000304899 00000000001

END OF PCS TEST" SUBROUTINE

C7=Y5/Y4
C8=Y6/Y3

C4=Y1/Y2
C6=1.0-C4 ,
GO TO 38 IF I7UO

YkT=Y25/Y15
Y48=1,0-C7
Y49=1,0-C8

YSO=Y2-Y1
Y51=Y3-Y6
Y52=Y4-Y5
Y53=(Y47-Y1)/YSO

GO TO (45+I15)
YI=(Y47+Y2X(-C7-C8+C7XC8))/

Y48XY49

GO TO 38

Y2=(Y47-YIXY48XY49)/

I.O-Y48XY49
GO TO 38
Y3=Y6XY48/(Y53-C7)
GO TO 38

Y4=YSXY49/(Y53-C8)

F
F

F
F
F
F
F



1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1.
1
1
1
1
1
1
1
1

1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

1
1

000
049
000

050

038

000

000

OOO

000

000

OOO

000

000

039

000
000

000

000
000

000

000

000

000

000

000

000

04O

000

000

061

000

000

000

000

062

000

001

000

000

000

000

000

000

000

000

000

000

000

000

000

002

O02

002

000

000

000

000
000

000
000

-6? -

GO TO 38 F
vS=Y4X(YS3-C8)/Y49 F
GO TO 38 F
Y6=Y3X(Y53-C7)/Y48 F
I5=0 F

I6=0 F
CT=YS/Y4 F

C8=Y6/Y3 F

C4=Y1/Y2 F

C6=1.0-C4 F

18=18+I F

16=1 IF Y41 V Y1 F

39,10tO,It2t F

16=lIFY(2+IO)VY(42+IO) F

16=IIFY45VY5 F

16=IIFY46VY6 F
16=IIFYIVY2 F

16=IIFYSVY4 F

16=11FY6VY3 F

16=1 iF C68 V Y3 F

16=1 IF C69 V Y4 F

GOTO24IFI6UIIFITUOIFI8U1 F

GO TO 25 iF 16U1 IF 17U1 F

GO TO 23 IF 16U1 IF 17UO F

15=1IFY10VY1-Y41 F

40,I091t1_2_ F

15=1IF Y]OVY(42+IO)-Y(2+IO)F

15=iIFY10VYS-Y45 F
I5=IIFYIOVY6-Y46 F

PUNCH Y1THRU Y6 IF 17 U 1F

READ SEGMENT I IF

QPCSFtSO U 1 F

GO TO 64. IF YIO V C55-C54
IF YIO V Y2 -Y1 F

1,10_O_ltl, F

C'_IO+IO)=C6XC(7+IO) F
C.(12+IO)=(C6P3)XC(7+IO)/12 F

C14=(C4P3)/(l+Y?)X12 F

cis=Y9XCgXC4 F
C16=(C4P3)XYgXC9/12 F

C17=C10+C9XC4 F

C18=Cl1+C9XC4 F

C19=(C17XC18)-(C15P2) F

C20=(C16/Y9)+C12+

(C9XC4X(ClOP2)/4X(C17P2))+

C10X((1.O-(ClO/C17))P2)/4 F

C21=(C16/Y9)+C13+
(C9XC4X(CIIP2)/4X(C18P2))+

C11X((1.O-(C11/C18))P2)/4 F

2_IOtO,l,l_ F

C(I+IO)=YTX(Y2P3)X(C(20+IO)

-((C15P2)X(C(10+IO)P2.)/4X

C19XC(17+I0))) F

C3=YTX(Y2P3)X(C16+(C15X

C10XC11/4XC19)+C14) F

PUNCH C1THRU C21 F

C86=1o0-I.0/C4 F

C84=1.0-C7XC86 F

C85=I°0-C8XC86 F

C22=ORT2EtC1/C2Q F



i
I
I
I
I
I
I
I
I
i
i
I
I
I
i
I
I
I
I
I
i
I
I
'I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

000
000
000
000
000
000
000
000
006
000
007
000
000
000
OO8
O08
O08
000
000
000
000
000
000
000
000
000
OO9
000
000
000
000

000

000

000

010

000

0ll

000

000

000

000

000

012

000

000

000

000

000

000

000

000

000

000

000
000

073

000
000

000

000
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C23=I/C22 F

C25=2XC3/ORT2E,CIXC2Q F

YI6:YI3/YI4 F
C24=ORT2E,CIXC2Q/C3 F

C21=ORT2EIC22Q F

12,10,0,I,i, F

C31=C21/Y16 F

C31=I/C311FC31VI.O F

ll,II,O,l,l, F
12=0 F

C(26+II+2XI0)=C30 F

12=12+1 F

8,13,0,I,2, F

8,I4,1,1,3, F
C(31+I4+3XI3)=(((12+I3)XC31)

P4)+(2X(((12+I3)XC31XI4)P2)/

C24)+14P4 F
GO TO 9 IF 11U 1 F

C41=ORT2E,C360/2X(12+1)XC31F

C42=(12/((2XI2)+I.))P2 F
C43=(1/9XC32)+9/25XC34 F

C44=((12+2)/((2.XI2)+3))P2 F

C45=(1/9XC38)+9/25XC40 F

C30=C411

ORT2£,(C42XC43)+(C44XC45)O F

GO TO 10 F

C41=1/2X(12+I)XC31 F

C42=(I/9XC35)+9/25XC37 F

C43=(12P2)/
(((2XI2)+I)P2)XC33 ' F

C44=((12+2)P2)/

({(2XI2)+3)P2)XC39 F

C30=C41/ORT2EtC42X

(C43+C44)0 F
C(26+I1+2XIO)=C30IF 12. U1 F

GO TO 7 IFC(26+II+2XIO)WC30F

CAS F

C(26+2XIO)=C(27+2XIO)IF

C(26+2XIO)VC(27+2XIO) F

C24=1 F

C21=1 F

Y16=(Y3-Y6)/Y4-Y5 F

LOCAL CAS F

C31=I/Y16 F

IO=O F

IO=lIFC31VloO F

C20=YTX(YIP3)XC9/12 F

Y20=C28XC20X(CSP2)/

32X((Y(4-10)-Y(5+IO))P2} F

C31=YI4X((CI/C2)POo25)/YI3 F
I0=1 F

IO=O IF C31V 1.0 F

YIg=(c26X(C5P2)X

(C(2-10)XC(I+IO)P3)PO.25)/

32XY(]3+IO)P2 F

]8,11,0,I,113-I, F

GO TO 67 IF Y(26+11) U 0.0

IF Y(31+II)UO,O F

C22=ORT2EtCI/C20 F

C23=1/C22 F



000

000

000

000
000

000

000

074

000

000

000
070

071

000

000

000

076

000

013

000
000

004

000

003

063

000

000

000

000

000

000

000

000

000

000

077

000

000

068

000

000

000
000

000

079

000

000

000

000

005

000

000

000

000

000

000
000

000

000
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C25=2XC3/QRT2EtCIXC2Q F
PUNCHC22 THRU C25 F

Y16=YI3/YI4 F

15,10,0,I,I, F

C87=C(79+11) F

C87=C87XC841C85
IF IOU1 F

GO TO 70 IF Y(26+I1}WO.O F
C29:1.0 F

C30=C87 F

117=0 F

GO TO 76 F

GO TO 74 IF Y(31+I1}UO°O F

C29=I°0/C87 F

C29=0°0 IF Y(26+I1)U0,O F

C30=I°O F

IlT=l F

127=0 F
13=0 F

127=127+5 F

127=I IF Y(26+II} U 0.0 F

HALT 2 IF 127 U 20 F

13=13+1 F

12=0 F

C27=C28 F

12=12+1 F

C28=((C22X(12/Y16)P2)

+(C25X(13P2))+((C23X(Y16/12)

P2)XI3P4))/C29+C30X

((13XYI6/I2)P2) F
PUNCH C28 F

PUNCH 10 THRU 13 F

GO TO 77 IF C28V0.0 F

GO TO 3 IF I17 U 0 F

C27=C28 IF 13U1 F

GO TO 68 F
GO TO 3 IF 0,0' V C27 F

GO TO 3 tF I2 U1 F
GO TO 3 IF C27 V C28 F
Y(52+I3)=C27 F
I(27+I3)=I2-1 F
GO TO 4 IF I27 V I3 F
PUNCH Y53 THRU Y(53+I27) F'
PUNCH I27 THRU I(28+I27) F
I3=0 F
I3=I3+1 F

C28=Y(52+13) F

GO TO 79 IF 0°0 V Y(52+13) F

5914_13,1,127-1, F

13=I4+1 IF C28 V Y(53+14) F

C28=Y(53+14) IFC28VY(53+I4)F

GO TO 13 I FI3UI27 IF 12?VIF

12=I(27+13) F
PUNCH IO THRU I3 F

14,I4,0,1,1_ F

C26=C(22+14)X(I(2+14)/

Y16)P2 F

C27=C25X(I(3-14)P2) F

C28=C(23-14)X((I(3-14)P2}

XY16/I(2+I4))P2 F
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000

000

000

000

000

000

000

014

014

000

000

000

015

0.00

067

000

000

000

000

000

000
000

000

000

000

018

000

000

000

000

000

000

016

016

016

016
000

000

000
000

000

000

000

000

000

000

000

000

000

017

000

000

000

000

000

000

000

000

000

019
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C29=Y(14-14)P2 F

C29=((Y(4-14)-Y(5+I4})P2)/
C(84+14) IF IO U 1 F

C30=ORT2E,CIXC2Q F
C30=C20 IF fOUl F

PUNCH C26 THRU C30 F

Y16=I.0/Y16 F

Y(17+I4+4XIO)=-CSXC30X

(C26+C27+C28)/C29 F
C22=1.0 F

C23=i.0 F

C25=2.0 F
YI6=(Y3-Y6}/Y4-Y5 F

PUNCH YI7 THRU Y22 F

18,10,0,1,1, F

Y(68+II+SXIO)=(Y(26+I1)/

Y(17+4XIO))+(Y(31+I1)

/Y(IB+4XIO))+(Y(36+II)/

Y(]9+IO))P2 F

PUNCH Y68 THRU Y77 F

GO TO 18 IF (I°O-YIO)V
Y(68+II+SXIO) F

GO TO 24 IF

A(I.O-Y(68+II+SXIO))VYIO F

15=I F

BYPASS F

CI9:Y4-Y5 F
CI8=Y3-Y6 F

CI7=Y2-YI F

16,10,0,1,1, F

C(15+IO)=YTX(Y(5+IO)P3)X

C9/12 F

Y(23+IO)=-CSXC(15+IO)X

((YI/Y(5+IO))+CITIY(4-1.O))X

(((C17/C(18+I0))P2)+0.425)/

C17P2 F
CIO=Y4/((Y4XYI)+YSXCI7 } F

CII=Y3/((Y3XYI)+Y6XC17) F

C12=C10P2 F
C13=CIOXCII F

C14=C11P2 F

17,10,0,I,113-I, F

Y(53+IO)=(((Y(26+IO)P2)XC12)

-(Y(26+IO}XY(31+IO}XCI3)+

((Y(31+IO)P2)XC14}+

3X(Y(36+IO)/YI)P2) F

Y(53+IO)=

ORT2E,Y(53+IO)/(YI2P2)Q F

Y(SB+IO)=AY(26+IO)XCIO/YI2 F

Y(63+IO)=AY(31+IO)XCII/YI2 F

20,I0,0,1,1, F

20,11,0,I,11_-1, F

Y(TB+I1+SXIO}=Y(26+II+SXIO)/

Y(23+I0) F

GO TO 19 IF (I.O-YIO)V

Y(TB+II+SXIO) F

GO TO 24 IF

A(I.O-Y(TB+II+SXIO|)VY10 F

15=1 F

GO TO 20 IF (1.O-YIO}V
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I
1
1
1
1
1
1
1
1
1
1
1
1.
1
1
1
1
1
1
I
1
]
I
1
1
1
1
I
l

I
1

1
1
I
1

1
1
i
1
I
I
I
1
I
I
I
I
1
I
I
1
1
I
1
I
I
1

I
1
I

019
000

000

000

02O

000

000

000

000

000

000

021

000

000

081

000

000

000

000

000

000

000

000

000

000

000

000

000

064

000

000

000

000

000

000

000
078

000
053

000

000

054

065

000

000
000

000

000

000

O56

000

O22

069

O55

055

000

023

000

000

024

Y(SB+II+SXIO) F
GO TO 24 IF

A(I.0-Y(58+II+5XlO})VYIO F
15=i F

BYPASS F
21_II,0,I*I13-I, F

GO TO 21 IF (1,0-Y10)

VY(53+II} F

GO TO 24 IF
A(I.O-Y(53+II))VYIO F

15=1 F

BYPASS F

17:0 F

I26=0.0 F

126=1 IF QPCSF,6Q U 1 F
CT?:Y5/Y4 F

C?8:Y6/Y3 F

Y25:Y8XYI3XY14XY2X
(1.0-C6X(1.0-CT)X(1.0-C8)) F

GO TO 64 IF 110 V 0 F

GO TO 65 IF 18 V I F

C62=Y1-Y41 F

C6B:Y2-Y41 F

C64=YB-Y43 F
C65=Y4-Y44 F

C66=YS-Y45 F

C67=Y6-Y46 F

GO TO 78 F
C44=1°0-C7 F
C45=1°0-C8 F
C62=C44XC45 F
C63:1.0-C62 F

C64=-CkkXC6XC8XY2/Y3 F

C65:-C45XC6XCTXY2/Y4 F
C66=C45XC6XY2/Y4 F
C67=C44XC6XY2/Y3 F
C41=0.0 F
53_I0,0,1_5, F
C41=C41+C(62+[0)P2 F
C41=QRT2EtC41Q F

54,10,0,I,5, F

C(62+I0}=C(62+I0)/C41 F

GO TO 34 IF 15U1 F

118=1 IFQPCSF_IQ U 1 F

118=I0 IF QPCSFt2Q U 1 F

118=100 IF QPCSF,3Q U 1 F

118=10000 IF QPCSF,4QU1 F

GO TO 34 IF Yll/118 W C53 F

56,10,0,I,5, F
C(54+IO)=Y(1+IO) F

GO TO 23 IF 116U1 F

C53:2.0XC53 F
559IO_O_ltSt F
Y(I+IO):C(54+IO)-
C53XC(62+I0) F

GO TO 38 F

C53=C53/2,0 F
I 16=1 F

GO TO 69 F
HALT 0 IF 1 W I8 F
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1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1

1
1
1
1
1
1

1
1

1
1
1
1
1
1

1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1

000
000

O25
041
000
000

026
000
000
O52
000
000
000
O27
000
000
000
000
000
000
000
000
000
000
000
051
000
000
O28
000

000
066
000
000
000
000
000
000

000
000

000
000
000

000
000
000
000

000
000

000
000
O0 0

000
000
000

000
000
000
000
000

GO TO 34 IF 1 W 18 F
GO TO 23 IF 17UO F

GO TO 32 IF 111V19 F
19=0 F
114=114+I F
GO TO 25 IF II4UI F

I14:0 F
HALT I IF 110 U I12 F

110=110+1 F
I15=I15+I F

115=0 IF I15 W 6 F

27_I0_0,195_ F
C(46+IO}=(2XQRNGE,10)-1,0 F

C(46+I0):C(46+I0)XC(70+I0) F.

121=1 F
124:124+I F

C50=0°0 IF 126U1 F

C51:0,0 IF 126U1 F

C47:0,0 IF YIO V C55-C54
IF C63 V C62 F

115=0,0 IF YIO VC55-C54 F

C48=0,0 IF YIO V C56-C59 F

I15:5 IF YIO V C56-C59 F

C49=0,0 IF YIO V C57 -C58 F

I15:4 IF YIO V C57-C58 F

C(46+115):0.0 F

C43:0,0 F

28_I090_1_5_ F

C43=C43+C(46+I0)P2 F

C43:0RT2EtC43Q F

66_I090,I_5_ F

C(46+I0):C(46+I0.)/C43 F

PUNCH C46 THRU C51 F

PUNCH 115 THRU 122 F

C32:Y42-C55 F
C33:Y43-C56 F

C34:Y44-C57 F
C35:C58-Y45 F

C36:C59-Y46 F
C37:C55-Y25/Y15 F
C38=C56-C59-Y46 F
C39:C57-C58-Y45 F

C40=C54-Y41 F
C41:C55-C54 F

C41=(Y25/Y15)-C54 IF 115 UIF

C42:C56-C68 F

C43=C57-C69 F

Y53:C47 F

Y54=C48 F

Y55=C49 F
Y56=-C50 F
Y57=-C51 F

Y58:0°0 F

Y58:-C47 IF 115 U 0 F

Y59:C51-C48 F
Y59=0,0 IF I15 U5 F
Y59:0,0 IF 115 U 2 F

Y60:C50-C49 F
Y60:O,O IF I15U4 F

Y60:O,O IF 115 U 3 F
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1

1
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1

1

1

1

1

1

1

1

1

1

l

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

0o0
000

000
000

000

000
000

044

000

000

000

042

ono

000

000

000
000

029

000

O3O

O32
000

033

03B

000

000

OOO

000

000

OB4

000

035

035

043

031

075

000

O36

000

000

000

000

000

000

000

Y61=-C46 F
Y62=C46-C47 F

Y62=C461F I15 U i F

Y62=0.0 IF I15 U 0 F

Y63=-C48 F
y-64=-C49 F

#4,I0,0,I_i19 F

y(DB+IO)=O.OIFY(53+IO)U-O.OF

42,10_O,Itllt F
C45=C(B2+IO)/Y(53+IO) F

C60=C45 IF Y(53+IO)VO.O F

C61=C45 IF 0.0 V Y(53+I0) F

30,I0_0,I_II_ F

C45=C(32+I0)/Y(53+I0) F

PUNCH C45 F
GO TO 29 IF 0.0 W Y(53+I0) F

C60:C45 IF C60 V C45 F
GO TO 30 IF Y(53+I0) WO.O F

C61=C45 IF C45 V C61 F

BYPASS F

C32=C(60+II4}XQRNGE_2Q F

33,I0,0_1,5, F

Y(I+IO)=C(54+IO)+

C32XC(46+I0) F
YS=C77XY4 IF 126UI F

Y6=CTBXY3 IF 126U] F

19=19+I F

GO TO 41 IF YIO V A C32 F

GO TO 37 F

PUNCH Y1 THRU Y6 F

35,10,0,I,6, F

PUNCH Y(53+SXIO) THRU

Y(52+I13+SXIO} F

PUNCH I15 F

PUNCH Y25 F

PUNCH 124 F

36,10,0,I,5, F

C(54+IO)=Y(I+IO) F

C53=YII F

17=I F

19=0 F

I14=0 F

116=0 F

124=0 F

GO TO 26 FF
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